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The flow induced by a spherical particle spinning in the presence of no-slip planar
boundaries is studied by numerical means. In addition to the reference case of an
infinite fluid, the situations considered include a sphere rotating near one or two
infinite plane walls parallel or perpendicular to the axis of rotation and a sphere
centred within a cube. The hydrodynamic force and couple acting on the sphere
exhibit a complex behaviour under the sometimes competing, sometimes cooperating
action of viscous, inertial and centrifugal effects.

1. Introduction
At a very low Reynolds number, a couple-free spherical particle suspended in a

viscous fluid rotates with the local angular velocity of the fluid (see e.g. Happel &
Brenner 1973; Kim & Karrila 1991). However, a non-negligible moment of inertia
will cause a transient rotation relative to the surrounding fluid. For example, in a
fluidized bed, particles acquire angular momentum under the effect of collisions or by
traversing a vortical region, and they may retain this angular momentum as they move
to a different region (see e.g. Wu et al. 2008a ,b). The process that forms fuel drops
in a spray may impart to them an initial angular velocity (see e.g. Xin & Megaridis
1996). A heavy particle may settle out of a rotating fluid mass. The hydrodynamic
force and couple acting on the particle in these and other instances are modified
by the presence of nearby boundaries, with consequences on spin-up and spin-down
time, wall deposition, entrainment and others. Furthermore, particle rotation acts as
a source of angular momentum for a fluid, just as drag and lift act as sources of
linear momentum, and may need to be included in an averaged-equation model of
disperse systems.

Recent advances in microfluidics, where the proximity of boundaries is all but
unavoidable, are another reason of interest in these phenomena. For example, Leach
et al. (2009) have measured the angular velocity of a microsphere held in place
near a boundary by optical tweezers. The rotating sphere viscometer is based on
the relation between the applied couple and the resulting angular velocity (see e.g.
Walters & Waters 1963, 1964; Besseris, Miller & Yeates 1999; Parkin et al. 2007). This
principle has recently been used to measure the viscosity of minute liquid samples and
intracellular fluids by means of rotating microspheres (Besseris et al. 1999; Parkin
et al. 2007).
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Figure 1. (Colour online) Four of the situations studied in this paper; the thick lines denote
solid boundaries, to which the rotation axis is perpendicular in (a,c) (§§ 4 and 6) and parallel
in (b, d) (§§ 5 and 6).

The rotation of a sphere in a quiescent viscous fluid, with and without inertia,
has been the object of several papers. Banks (1976) has studied the flow and the
hydrodynamic couple on a steadily rotating sphere with a fixed centre in the boundary-
layer approximation, while Dennis and co-workers (Dennis, Singh & Ingham 1980;
Dennis, Ingham & Singh 1981) have solved the full Navier–Stokes problem. The
boundary layer on a sphere impulsively set into rotation has been studied by Barrett
(1967), while the complete time-dependent problem has been solved by Dennis &
Duck (1988) and the Stokes-flow version by Feuillebois & Lasek (1978). Hollerbach
et al. (2002) have studied the flow caused by the torsional oscillations of a sphere in
a fluid at rest.

The effect of boundaries, however, has only been considered in the low-Reynolds-
number regime, starting with the theoretical papers of Jeffery (1915), Dean & O’Neill
(1963) (corrected in Goldman, Cox & Brenner 1967), O’Neill (1964), Cox & Brenner
(1967a), Cox & Brenner (1967b), Takagi (1974) and Chaoui & Feuillebois (2003).
The study of Malysa & van de Ven (1986) has provided experimental confirmation
of some of these results. The studies of Ganatos, Pfeffer & Weinbaum (1980a) and
Ganatos, Weinbaum & Pfeffer (1980b) on the slow motion of a sphere between two
parallel walls have been extended to droplets by Keh & Chen (2001), and contain
some limited results on the effects of rotation. Recent work, motivated by an interest
in the interaction of cells or microspheres with the glycocalix, has considered the
translational and rotational motion of a sphere near a Brinkman medium (Damiano
et al. 2004), again with the neglect of inertial effects.

The purpose of the present paper is to investigate inertial effects on the
hydrodynamic interaction of a spinning sphere of radius a at a distance d from
one or more boundaries. The centre of the sphere is taken to be fixed. We consider
spheres rotating about axes parallel or perpendicular to a single no-slip plane or
between two parallel planes (figure 1). The results depend on the two dimensionless
parameters

d

a
and Re =

a2Ω

ν
(1.1)

in which Ω is the angular velocity of the sphere and ν is the kinematic viscosity of
the fluid.

The situation considered here is simpler than the one in which the fluid rotates,
or the sphere translates in addition to rotating. There are many papers dealing with
these more complex situations. A good review is provided by Bush, Stone & Tanzosh
(1994). Among the more recent contributions, we may mention the studies by Minkov,
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Ungarish & Israeli (2000) and Minkov, Ungarish & Israeli (2002) on the translation
of particles in finite-size containers and the study of Loper (2001) on the structure of
the Taylor columns that form in these conditions.

Similarly to the case of rotating disks and cones, with increasing Reynolds number
the flow induced by a sphere rotating in an unbounded fluid becomes unstable as
studied experimentally and theoretically by several investigators (see e.g. Kohama &
Kobayashi 1983; Wimmer 1988; Taniguchi, Kobayashi & Fukunishi 1998; Garrett &
Peake 2002). The Reynolds number at which these phenomena take place is larger
than the ones considered in this paper.

2. Numerical method
We use the combined immersed-boundary, finite-difference physalis method

to solve the Navier–Stokes equations for an incompressible, constant-property
Newtonian fluid. The method is described in detail elsewhere (Zhang & Prosperetti
2005) and a very brief description will be sufficient here.

Because of the no-slip condition, near the particle the fluid-particle relative velocity
is very small. In the rest frame of the particle, therefore, the Navier–Stokes equations
can be linearized to the Stokes form. The exact solution of these equations can be
expressed analytically as an infinite series containing undetermined coefficients (see
e.g. Lamb 1932; Kim & Karrila 1991). Farther away from the particle surface (in
practice, at distances of the order of one mesh length), the nonlinear terms become
important and the solution is calculated by an explicit standard projection method
with first-order accuracy in time and second-order accuracy in space.

An iterative process brings the finite-difference and the analytic solution in
agreement by the following procedure: (i) the current finite-difference solution for
pressure and vorticity is used to estimate the undetermined coefficients after a
suitable truncation of the infinite series; (ii) this estimate is used to set velocity
boundary conditions at the grid points adjacent to the particle surface; (iii) a new
finite-difference solution satisfying these boundary conditions is calculated, and the
process repeated to convergence. Noteworthy features of the method are the following:

(a) The no-slip condition at the particle surface is satisfied exactly;
(b) The lower-order undetermined coefficients give the force and torque on the

sphere directly, thus avoiding the need to integrate the numerically calculated fluid
stress over the particle surface;

(c) If the Stokes approximation is used beyond its approximate domain of validity,
our experience is that the iterative process will not converge. In this respect, the
method contains a built-in accuracy test.

We apply the no-slip condition on the other solid boundaries. Different conditions
are appropriate on the remaining boundaries of the computational domain depending
on the problem. In an unbounded fluid, or when the axis of rotation is parallel to the
plane wall(s), there is symmetry about a plane through the sphere centre and normal to
the axis and corresponding conditions are imposed on the boundaries parallel to this
plane on both velocity and pressure. On the other boundaries and in the other cases
we have tried both periodicity conditions and zero gradients normal to the boundary.
The differences on the computed couples and forces were small, of the order of 1 %.
The streamline pattern was essentially identical near the particle and visibly affected
only near the boundaries. The results shown are for zero-normal-gradient conditions.

Because of its reliance on the existence of a thin Stokes-like region near the
sphere surface, the simulation of large-Reynolds-number flows requires a very fine
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Re = 2 Re = 10 Re = 20 Re = 50 Re = 100

Dennis et al. (1980) 1.0034 1.0741 1.2128 1.5458 1.9218
Present work 1.0038 1.0692 1.1980 1.5207 1.8781

Table 1. Comparison of the present results for the normalized hydrodynamic torque
−L/8πµΩa3 acting on a sphere rotating in an unbounded fluid with the results given by
Dennis et al. (1980) for different Reynolds numbers, Re = a2Ω/ν.

grid which limits the total size of the computational domain. In this work, this
constraint is alleviated somewhat by placing the particle at the centre of a cubic
region discretized with twice as many grid points in each direction as the rest of the
computational domain. Herein lies the main difference between the code used for
the present computations and that described by Zhang & Prosperetti (2005). In spite
of this refinement, in order to have simulation times sufficiently short to permit a
parametric study, we have been forced to limit ourselves to a maximum Reynolds
number of the order of 100 and therefore smaller than that used by some earlier
investigators. In particular, Dennis et al. (1980, 1981) and Dennis & Duck (1988)
were able to consider values of Re of the order of 103 by using a method specifically
designed for a sphere in an unbounded fluid. That method, however, could not be
used to explore the effect of boundaries, which is the main thrust of the present study.

The size of the domain necessary to obtain a solution essentially unaffected by the
computational boundaries decreases with increasing Reynolds number while the mesh
length necessary for grid independence has the opposite trend. Suitable values for
these parameters were determined by trial and error. For the cases of §§ 3 (unbounded
fluid) and 4 (one wall, perpendicular axis), the computational domain was a cube
with a side of between 10 and 17 particle radii discretized with 50–60 cells; between
3 and 6 coarse cells per particle radius were used, increasing with the Reynolds
number. Because of the use of the refined grid, the actual number of cells used near
the particle was actually double. For the simulations of § 5 (one wall, parallel axis)
the computational domain was a parallelepiped elongated in the directions parallel
to the wall with sides of 11–16 radii (about 50 cells) normal to the wall, 10–20 radii
(50–60 cells) in the direction of the axis and 16–26 radii (80–90 cells) in the third
direction. There were between 3 and 6 coarse cells per radius. For the two-wall cases
of § 6, the computational domain extended 8–12.5 radii (50 cells) in the directions
parallel to the walls and between 4 and 6 coarse cells per radius were used. For the
closed enclosure case of § 7 we used between 4 and 9 coarse cells per particle radius.
The side of the fine-grid cube surrounding the particle was between 3 and 6 radii.
Most of the computations were repeated with different grids to make sure that the
results shown are essentially grid independent.

For all the simulations the calculation was started from rest by impulsively imposing
the required angular velocity on the sphere. The calculation was continued until a
steady state was reached as indicated by the time independence of forces and couples.
The explicit time integration puts a stringent upper bound on the time step. The
simulations were conducted with a step adjusted as recommended by Peyret & Taylor
(1983, p. 148) and Fletcher (1988, vol. 2, p. 335).

In table 1 we compare the torque on a sphere spinning in an infinite fluid as
calculated by Dennis et al. (1980) with those given by the present method. The two
sets of results are within 1–2 %. Table 2 shows the effect of different domain size
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H/a a/�x −L/8πµΩa3

10.4 10 1.519
7.2 10 1.515
5.6 10 1.494

11.1 9 1.512

Table 2. Normalized hydrodynamic torque −L/8πµΩa3 acting on a sphere rotating in an
unbounded fluid as computed with domains of different sizes and different mesh lengths �x.
The computational domain is a cube of side H centred at the sphere centre. The Reynolds
number is 50.

d/a Exact, Stokes flow Present, Re = 10−3

1.5 1.0391 1.0396
1.75 1.0241 1.0235
2 1.0159 1.0153
3 1.0047 1.0040

Table 3. Normalized hydrodynamic torque −L/8πµΩa3 acting on a sphere centred at a
distance d from a plane and rotating around an axis normal to the wall as given by the
Stokes-flow solution of Jeffery (1915) and the present method. The present results for Re =10−2

are identical to those shown.

and mesh lengths for a sphere in an unbounded fluid for Re = 50, and table 3 is a
comparison of the present results for Re = 10−3 and 10−2 with the analytic solution
of Jeffery (1915) for the near-wall situation of figure 1(b). All these comparisons
demonstrate the satisfactory accuracy of the present computations.

3. Rotation in an unbounded fluid
The case of a sphere rotating in an unbounded fluid is useful both to test of the

accuracy of the simulations and to gain insight into some basic physical aspects of
the situation. The sphere rotates with a positive angular velocity around the z-axis.

3.1. The steady-state problem

The hydrodynamic couple L on the sphere is given by

L =

∮
x × (τττ · n) dS (3.1)

where the integral is over the sphere surface, x is the position vector with respect to
the sphere centre of the surface element dS on which the unit outward normal is n
and τττ is the viscous stress tensor. The only non-zero component of L is along the axis
of rotation ΩΩΩ/|ΩΩΩ | and is given by

L ≡ ΩΩΩ

|ΩΩΩ | · L = 2πa3

∫ π

0

sin2 θτrφ d(cos θ) � 8

3
πa3τrφ, (3.2)

in which τrφ is a component of the viscous stress tensor and (r, θ, φ) refer to a
spherical coordinate system with the polar axis along the axis of rotation. At a high
Reynolds number, we may use the estimate

τrφ � µ

2

−Ωa√
ν/Ω

(3.3)
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to find

− L

(πρa5Ω2)/2
� 8

3
Re−1/2. (3.4)

A more detailed calculation in the boundary-layer approximation (Banks 1976) gives
a somewhat different value of the numerical coefficient, namely

− L

(πρa5Ω2)/2
� 2.06 Re−1/2 (3.5)

which has been confirmed by the full Navier–Stokes simulations of Dennis et al.
(1980) with the slightly different value of 2.05.

At a small Reynolds number, on the other hand, we may use the estimate

τrφ � µ
−Ωa

a
(3.6)

to find

−L � 8πµa3Ω, (3.7)

where we have dropped a coefficient 1/3 to conform with the exact Stokes-flow result
(see e.g. Lamb 1932; Kim & Karrila 1991). In this regime, the flow disturbance decays
sufficiently fast away from the sphere that a regular perturbation expansion in Re

can be carried out. The first few terms were calculated by Bickley (1938) and Collins
(1955) and are

− L

8πµΩa3
= 1 +

Re2

1200
− 15 647

20 744 640 000
Re4 + · · · . (3.8)

This series was extended by others and, notably, carried to terms of the order of Re20

by Shail (1997) by means of computer-algebra techniques.
Our numerical results for L versus Re are shown in figure 2 together with the

asymptotic approximations (3.5) and (3.8). In this and in the following figures,
symbols indicate the computed points. The agreement in the range of validity of the
approximations is excellent and, in between, our results agree with those of Dennis
et al. (1980), who showed that their simulations were in very good agreement with
the experimental data of Sawatzki (1970).

It is intuitively evident that the centrifugal effect will produce a swirling radial jet
directed outward of the equatorial region of the sphere, which must be maintained
by a flow towards the poles in the direction of the axis of rotation. Figure 3 shows
some pathlines for Re = 1 and Re =30 which illustrate this phenomenon. The pitch
of the particle trajectories increases significantly with Re.

The poleward flow will exert equal and opposite forces on each hemisphere so that
the net force on the sphere vanishes. This cancellation will not occur, however, in the
neighbourhood of a boundary where, therefore, the sphere will be subjected to a force
as we show in the next section. In order to estimate this force, it is useful to consider
the magnitude of the poleward velocity. Arguing from the equation of continuity, we
may write

∂w

∂z
� w√

ν/Ω
= −1

r

∂

∂r
(ru) � Ωa

a
, (3.9)

where w is the velocity along the rotation axis and u is the velocity in the radial
direction. From this relation we find

w

Ωa
∼ Re−1/2. (3.10)
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Figure 2. Hydrodynamic couple versus Re = a2Ω/ν; the points are the present calculated
values and the lines the large-Re asymptote (3.5) with the correction of Dennis et al. (1980),
and the small-Re asymptote (3.8).

This is the same scaling as for the self-similar von Kármán’s rotating disk flow (see
e.g. Landau & Lifshitz 1987).

Unlike the von Kármán flow, in the present situation the velocity |w| along the axis
of rotation must go to zero far from the sphere and vanish at the poles. Thus, it must
have an extremum point |w|max of which (3.10) represents the order of magnitude.
Figure 4 shows a graph of |w|max/Ωa versus Re on a log–log scale. After adjusting the
constant by fitting the numerical results we find that the large-Re asymptote on
the right is given by (5Re−1/2)/9. We will use this result in the next section to estimate
the force on a sphere near a wall. The low-Re behaviour can be found simply by using
a in place of

√
ν/Ω to estimate the z-derivative in (3.9). After adjusting a constant as

before, we find |w|max/(Ωa) � Re/75.

3.2. The transient problem

For a vanishing Reynolds number, the transient problem is governed by the time-
dependent Stokes equations which are readily solved with the result (Feuillebois &
Lasek 1978; Gavze 1990)

− L

8πµa3
= Ω(t) +

1

3
Ω(0)

[
a√
πνt

− eνt/a2

erfc(
√

νt/a)

]

+
1

3

∫ t

0+

Ω̇(τ )

[
a√

πν(t − τ )
− eν(t−τ )/a2

erfc(
√

ν(t − τ )/a)

]
dτ, (3.11)

where Ω̇ = dΩ/dt . Evidently the couple is infinite at t = 0 whenever Ω(0) �= 0, as
could be expected. In particular, for an impulsively started constant rotation, Ω̇ =0
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Figure 3. Some pathlines around a sphere rotating in an unbounded fluid at Re =1
(a) and Re = 30 (b).

for t � 0+ and one finds

− L

8πµa3Ω
= 1 +

1

3

[
a√
πνt

− eνt/a2

erfc(
√

νt/a)

]
. (3.12)

Up to a numerical constant, the leading-order term of this result can be found from
(3.2) by using τrφ � µaΩ/

√
νt . As t → ∞, (3.12) gives

− L

8πµa3Ω
= 1 +

π

6

(
a√
πνt

)3

+ · · · . (3.13)

The transient effect is seen to decay much faster than that for the case of translation.
The time dependence of the hydrodynamic couple on an impulsively started sphere

was calculated by Dennis & Duck (1988) for Re =1000, 3000 and 5000. The trend
of the results was the same in all cases, with a very large value for small times, a
steep decline to a shallow minimum and a slight smooth rise to steady state. The
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Figure 4. Maximum absolute velocity |w/(Ωa)| along the axis of a sphere rotating in an
unbounded fluid as a function of the Reynolds number a2Ω/ν. The two lines are fits
proportional to Re and Re−1/2, respectively, at small and large Reynolds numbers.
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Figure 5. Transient hydrodynamic couple on an impulsively started (a) or stopped (b) sphere
in an infinite fluid versus normalized time; in ascending order the lines are for Re = 1, Re = 20
and Re = 100; the Re = 1 line has been omitted in (b).

boundary-layer approximation gave very similar results except that the shallow
minimum was not reproduced.

For the impulsively started sphere problem our method is inaccurate as long
as the boundary layer is thinner than a few mesh lengths. However, by running
simulations with different grids we have satisfied ourselves that this initial error
becomes negligible at later times. Our results for Re = 1, 20 and 100 are plotted in

figure 5 against Ωt/
√

Re = t
√

Ων/a2, namely time normalized by the geometric mean
of the two time scales 1/Ω and a2/ν. For Re =1 the couple decreases monotonically,
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Figure 6. Comparison between the exact result for the hydrodynamic couple at Re = 0 (solid
lines) and the near-wall approximation (4.1) (dashed line, a), and the leading-order result of
the far-wall approximation (4.2) (asterisks, b).

while for Re = 100 the shallow minimum (followed by a very slight local maximum
barely visible in the figure) is evident. The case with Re = 20 seems to be close to the
threshold between a monotonic and non-monotonic decrease. The shallow minimum
indicates that sufficient inertia causes a temporary thickening of the boundary layer
before the radial jet can establish itself. Figure 5(b) shows corresponding results for
an impulsively stopped sphere with Re = 20 and 100. The couple reaches very quickly
a large positive value (probably not accurately calculated by our method for the
reason explained before) and then decays monotonically to zero.

4. Rotation around an axis perpendicular to a plane boundary
In the Stokes limit, the problem of a sphere centred at a distance d from a plane

boundary and rotating around an axis perpendicular to the plane (figure 1a) has been
solved exactly by Jeffery (1915). The sphere rotates with a positive angular velocity
around the x-axis.

From Jeffery’s solution it can be shown that, when the sphere is very close to the
plane,

− L

8πµa3Ω
= ζ (3) − 3

(
π2

6
− 1

)(
d

a
− 1

)
+ · · · , (4.1)

where ζ is Riemann’s ζ -function and ζ (3) � 1.20206.
This result has been confirmed by a more direct method by Takagi (1974); the

first term in the expansion was also given in Cox & Brenner (1967b). A remarkable
feature of this result is that it remains finite as d/a → 1. In the other limit of a sphere
far from the plane one has (see also Brenner 1964)

− L

8πµa3Ω
=

[
1 − 1

8

(a

d

)3

− 3

256

(a

d

)8

+ · · ·
]−1

. (4.2)

The functional dependence predicted by (4.1) is compared with the exact result in
figure 6(a); figure 6(b) is a comparison with the leading-order correction in (4.2).

Inertia introduces new and interesting features. The poleward flow on the wall
side is retarded and unable to balance that coming from the opposite side with the
result that the radial jet is now directed towards the plane (figure 7). This causes
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Figure 7. Sphere rotating around an axis perpendicular to a plane: traces of the stream
surfaces in a plane containing the rotation axis for Re = 100 and d/a = 17/9. The plotting is
somewhat under-resolved near the sphere surface.
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Figure 8. Two examples of the pathlines in the wall region for Re =1 and d/a = 3. (a) The
pathline starts near the wall, spirals up and outward towards the rotating sphere, and spirals
back towards the wall. (b) The pathline resides on a toroidal surface.

a stagnation ring, with some of the fluid trapped between the radial jet and the
plane. It can be seen from figure 7 that the pathlines of some of the fluid particles
in this region reside on toroidal structures, while others have a more complex nature.
Examples of these two behaviours are shown in figure 8 for Re = 1. This behaviour
is less clear at higher Reynolds numbers as the spiralling motion is then faster as can
be seen by comparing the two examples in figure 3.
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Figure 9. Dimensionless wall-directed force acting on a particle rotating around an axis
perpendicular to the wall as a function of Re (a; lines in descending order with increasing
d/a) and as a function of the inverse distance from the wall a/d (b; lines in ascending order
with increasing Re).

The unbalanced fluid momentum in the direction of the axis causes the appearance
of a force directed towards the plane. Another contribution to this force arises from
the region of low pressure that forms between the sphere and the wall because of the
rotational motion. Figure 9 shows the dimensionless force

F

πµa2Ω
(4.3)

versus Re for several values of d/a, and versus a/d for different Re. From the
unbounded fluid case, the solution of the Navier–Stokes equations may be expected
to be an analytic function of Re near Re = 0. Thus, since F cannot depend on the
direction of rotation, one expects F = 0 at Re = 0 and F/Ω ∝ Re for small Re. The
dependence can be non-analytic at large Re and, indeed, figure 9 suggests F ∝ |Ω | for
large Re. This behaviour can be understood recalling the estimate of the poleward
velocity given earlier in (3.10). If we use the estimate F ∼ πa2ρw2 ∼ πa2ρ(a2Ω2Re−1),
we find F/(πµa2Ω) ∼ const. The value of the constant will depend on the extent to
which the flow from the wall direction is impeded which, in its turn, depends on the
distance from the wall. In general, one would expect the net force to decrease with
distance away from the wall as indeed found numerically and shown in the figure. It
is also seen that the asymptotic trend F ∝ Ω is reached at higher and higher Reynolds
numbers the closer the sphere is to the wall.

Figure 10 shows the hydrodynamic couple on the particle for various distances
from the wall as a function of the Reynolds number. With respect to the infinite-fluid
results of figure 2, in the smaller Reynolds number range the couple is increased by
the wall-induced viscous dissipation. The results for Re = 1 are seen to fall very close
to the Stokes-flow solution denoted by asterisks in the figure. Viscosity becomes less
significant at higher Re, when the flow feeding the equatorial jet becomes stronger
and dominates the viscous stress on the sphere surface. This flow is impeded by the
wall on one side of the sphere, which results in a lower viscous stress and a slightly
smaller couple than in the case of an unbounded fluid over an intermediate range of
wall–sphere distances.
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Figure 10. Hydrodynamic couple versus Re = a2Ω/ν at different distances from the wall
(a) and versus the inverse distance from the wall a/d (b; lines in ascending order with
increasing Re); the circles in (a) are the infinite-fluid results of figure 2.

5. Rotation around an axis parallel to a plane boundary
We now turn to the case in which the axis of rotation, which we take as the y-axis,

is parallel to the wall (figure 1b). As before, the sphere rotates in the positive sense.
An approximate solution for the Stokes flow in this situation has been given by

Goldman, Cox & Brenner (1967) and a more accurate one by Chaoui & Feuillebois
(2003). When the sphere–wall gap is very small (Goldman et al. 1967) give

− L

8πµa3Ω
� 2

5
log

a

d − a
+ 0.3709 (5.1)

while, in the opposite limit,

− L

8πµa3Ω
� 1 +

5

16

(a

d

)3

. (5.2)

The corresponding results for the force parallel to the wall are (Goldman et al. 1967)

− Fz

πµa2Ω
=

4

5
log

a

d − a
− 1.516 (5.3)

and

− Fz

πµa2Ω
=

3

4

(a

d

)4
(

1 − 3

8

a

d

)
. (5.4)

As in the previous case, inertia introduces some complexity in the flow as can be
seen from the stream surfaces for d/a = 3 and Re = 1 and 50 shown in figures 11
and 12. At a low Reynolds number, the streamlines in the equatorial plane near the
sphere weakly spiral outward (figure 11a) and, on a larger scale, viscosity produces
a mainly downward flow parallel to the wall. At Re = 50 the radial jet is much
stronger and causes a stagnation line on the solid wall (figure 12a). The wall pressure
distribution for this case is portrayed in figure 13 and clearly shows the high pressure
region in the neighbourhood of the stagnation line displaced away from the axis.
Farther from the sphere the fluid tends to retain for a much greater distance the
radial velocity component with which it is ejected from the sphere equator. In both
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Figure 11. Stream surfaces for a sphere rotating near a wall around an axis parallel to the
wall. (a) The trace of the stream surfaces in the equatorial plane of the sphere, which is rotating
clockwise. (b) The trace of the stream surfaces on a plane perpendicular to the boundary and
containing the axis of rotation; Re = 1, d/a = 3.
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Figure 12. Stream surfaces for a sphere rotating near a wall around an axis parallel to the
wall. (a) The trace of the stream surfaces in the equatorial plane of the sphere, which is rotating
clockwise. (b) The trace of the stream surfaces on a plane perpendicular to the boundary and
containing the axis of rotation; Re = 50, d/a = 3.

cases, in the plane normal to the wall and containing the axis of rotation, vortices
form the magnitude of which increases with increasing Re (figures 11b and 12b).

The presence of the wall generates forces in the wall-normal and wall-parallel
directions, Fx and Fz, respectively. These components, normalized as in (4.3), are
shown in figures 14 and 15 as functions of Re and a/d . At the smaller Reynolds
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Figure 13. (Colour online) Wall pressure distribution on the solid wall generated by a sphere
rotating around a horizontal axis parallel to the wall; Re = 50, d/a =3. The sphere centre is
at y = 7.5 and z = 10. The pressure maximum corresponds to the location where the radial
wall-directed jet impinges the wall as shown in figure 12(a).
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Figure 14. Dimensionless wall-normal force acting on a particle rotating around an axis
parallel to the wall as a function of Re (a) and as a function of the inverse distance from the
wall a/d (b). Positive and negative values of Fx denote forces directed away from and towards
the wall, respectively.

number, viscous effects in the gap between the sphere and the wall dominate and
the wall-normal force Fx is positive, i.e. repulsive, tending to push the particle away
from the wall. As Re increases, Fx changes sign and becomes attractive. This latter
behaviour is clearly a Bernoulli-type effect, similar to the potential-flow attraction by
the wall of a sphere translating parallel to it (see e.g. Milne-Thomson 1968, § 17.61).
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Figure 15. Dimensionless wall-parallel force acting on a particle rotating around an axis
parallel to the wall as a function of Re (a) and as a function of the inverse distance from
the wall a/d (b). Negative values denote a force oriented in the direction in which the sphere
would roll down the plane if it were free.

The behaviour of the force component Fz parallel to the wall (figure 15) is more
complex. When viscous effects are large, it is negative, i.e. in the direction in which
the sphere would roll down the plane if it were free. This effect rapidly decreases
as the distance from the wall increases and has essentially disappeared for d/a =3.
In an intermediate Reynolds number range the force becomes positive and then
changes sign again. This behaviour may be understood with reference to the radial
jet disturbed by the wall. At large Reynolds numbers the channeling imposed by the
wall tends to direct this jet upward, with the consequence that the force on the sphere
is downward by reaction. At intermediate Reynolds numbers, however, the adverse
pressure gradient that develops along the wall above the sphere is strong enough to
deflect this jet towards the wall normal, and the force is upward due to a combination
of the high stagnation pressure and the downward momentum of the unimpeded part
of the radial jet below the sphere.

It may be of some interest to note that plotting these results in the form

Fx,z

πµa2Ω

(
d

a
− 1

)
= fx,z

(
Re

(
d

a
− 1

))
(5.5)

achieves an approximate collapse for both force components as long as d/a is not
too large or Re not too small as shown in figure 16. The factor Re(d/a − 1) has the
obvious meaning of a Reynolds number based on the gap between the sphere and the
wall. The divergence of the force proportionally to (d/a − 1)−1 as d/a → 1 is weaker
than in the case of a rotating cylinder due to the curvature of the sphere in two
directions rather than one only. This divergence is however stronger than logarithmic,
which is the prediction of lubrication theory, as is easily verified, as well as of (5.3)
for Re = 0.

Figure 17 shows the effect of the wall on the hydrodynamic couple on the sphere
versus the inverse distance a/d from the wall. There is a relatively strong effect of
the wall at the lower Reynolds numbers, for which the couple diverges when the
sphere touches the wall as shown by (5.1). The results for Re = 1 are very close to
those of the Stokes flow. At a higher Reynolds number, the couple is dominated
by the shear stress associated with the two poleward flows found in the case of
the sphere in an unbounded fluid. In this situation, unlike the case of the rotation
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Figure 16. Wall-normal and wall-parallel forces for a sphere rotating about an axis parallel
to a solid wall from figures 14 and 15 plotted in the scaled form suggested by (5.5).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

a/d

−
L

/8
π
µ

Ω
a3

Re = 100
Re = 80
Re = 70
Re = 60
Re = 50
Re = 40
Re = 30
Re = 20
Re = 10
Re = 1
Stokes

Figure 17. Hydrodynamic couple on a sphere rotating around an axis parallel to a solid wall.
The horizontal axis is the inverse of the distance from the wall so as to permit a comparison
with the case of an unbounded fluid of figure 2.

axis perpendicular to the wall, neither one of these flows is greatly affected by the
wall and the resulting hydrodynamic couple is only very weakly dependent on a/d .
Nevertheless, the presence of the wall prevents the radial jet from developing freely
with a resulting accumulation of fluid in the gap between the sphere and the wall.
This feature thickens the boundary layer and decreases somewhat the viscous stress
on this portion of the sphere surface, which results in a shallow minimum of the
couple before it finally rises to the value for an unbounded fluid. These same processes
are encountered in the case of two walls and a cubic box discussed in the next two
sections, but their importance is then enhanced.
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Figure 18. Hydrodynamic couple on a sphere rotating between two parallel walls around an
axis perpendicular (a) and parallel to the walls (b). The horizontal axis is the inverse of the
distance from the wall so as to permit a comparison with the case of an unbounded fluid of
figure 2.

6. Sphere between two planes
We now study the effects of adding a second plane parallel to the first one and

symmetrically placed with respect to the sphere (figure 1c,d ). Because of symmetry
there is a couple but no net force on the sphere.

Figure 18(a) is for a wall-perpendicular axis of rotation, which we take to be the
x-axis. When the gap is small, viscous effects are large and so is the couple. As
the gap widens, viscous effects decrease and, at sufficiently large Reynolds numbers,
the couple becomes more and more affected by the poleward flow. For intermediate
distances this flow is impeded by the walls but, eventually, it can proceed with little
obstruction and the couple approaches the infinite-fluid result. These different physical
mechanisms produce a couple which, when the Reynolds number is large enough,
has a shallow minimum at an intermediate gap width. Qualitatively, this is the same
behaviour observed in the case of a single wall in figure 10 although the effect is
reinforced by the presence of the second wall.

Qualitatively, the couple for the case in which the axis of rotation is parallel to the
walls (figure 18b) is very similar to that of a single wall shown in figure 17. The same
physical mechanisms are at work, but with a somewhat greater intensity.

7. Sphere enclosed in a cube
The last case we consider is that of a sphere enclosed in a concentric cubic box

of side 2d; the axis of rotation is perpendicular to a pair of opposing faces of the
cube.

For the couple, the correction to the Stokes-flow, infinite-fluid result (3.7) remains
nearly constant over a significant range of Reynolds numbers which increases as the
box size decreases as shown by figure 19(a). For fixed Re, the general trend of the
couple as a function of a/d , the ratio of the sphere radius to the box side, shown in
figure 19(b) is qualitatively similar to what is observed for two walls in figure 18 and
one wall in figure 17. The physical mechanisms discussed in those cases are relevant
for the present one as well and explain the observed features of the results.
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Figure 19. Hydrodynamic couple on a sphere rotating inside a cube of side 2d .

8. Summary
In this paper we have studied several effects of neighbouring boundaries on the

steady flow induced by a rotating sphere. When the boundaries destroy the symmetry
about the sphere equator, forces develop which may be directed towards or away from
the boundary and parallel or anti-parallel to it depending on the rotational Reynolds
number a2Ω/ν and the distance from the wall. These forces would affect, for example,
the deposition of particles: a particle rotating as the result of the interaction with
a turbulent eddy might be repelled or attracted by a neighbouring wall as it moves
towards it.

Though simple, the flows we have studied exhibit an interesting and perhaps
unexpected richness under the action of the competing action of centrifugal, inertial
and viscous effects. The meridional pressure gradient induced by the centrifugal force
drives fluid from the poles towards the equator, from which it moves outward in the
form of a radial jet. Boundaries which break the axial symmetry of this jet induce
reaction forces. Small Reynolds numbers and sphere–wall gap widths bring into play
strong viscous effects which cause repulsive forces. Larger Reynolds numbers cause a
Bernoulli effect in the gap, which may turn the forces into attractive ones.
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